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EXPECTATION II

Abstract. We will define the expectation of a continuous random
variable and discuss basic properties.

1. Introduction

Let X be a continuous real-valued random variable with pdf f . Sup-
pose that ∫

|x|f(x)dx <∞.

We define the expectation or mean of X via

EX =

∫
xf(x)dx.

Remark 1. The law of large numbers as stated earlier for discrete
random variable is still valid.

Exercise 1.1. Let X be uniformly distributed on the unit interval.
Find EX.

Exercise 1.2. Let X be exponential with parameter (mean) µ > 0.
Show that EX = µ.

Exercise 1.3. Let X ∼ N(µ, σ2). Show that EX = µ.

2. Properties of Expectation

Theorem 1 (Change of variables, law of the unconscious statistician).
Let X be a continuous random variable with pdf f . If g : R → R is
Borel measurable, then

Eg(X) =

∫
g(x)f(x)dx

whenever the integral is absolutely convergent.

The proof of Theorem 1 is harder for the case of continuous random
variables. We will revisit this Theorem later when we discuss expec-
tation in more generality. We will prove a simple case of Theorem
1.
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Proof of Theorem 1—g strictly increasing and differentiable. Since g is
increasing, let h = g−1. We have that

P(g(X) ≤ y) = P(X ≤ h(y))

=

∫ h(y)

−∞
fX(x)dx,

so that the fundamental theorem of calculus gives that the density for
Y = g(X) is given by

fY (y) = fX(h(y))h′(y).

Thus with the change of variables y = g(x) and the inverse function
theorem, we have

EY =

∫
yfX(h(y))h′(y)dy =

∫
g(x)fX(x)dx.

�

If X and Y are continuous random variables defined on same prob-
ability space, we say that they are jointly continuous with joint pdf
j : R× R→ [0,∞), if for all x, y ∈ R, we have

P(X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
j(u, v)dudv;

note that the pdf of X is recovered by taking the whole integral in v,

fX(x) =

∫ ∞
−∞

j(u, v)dv

and in this context sometimes its referred to as a marginal.

Theorem 2. If X and Y are jointly continuous random variables with
joint pdf j then they are independent if and only if j factorizes as

j(x, y) = f(x)g(y)

for some functions f and g.

Proof. Clearly, if j factorizes, then X and Y are independent. If X and
Y are independent, then for (x, y) where F (x, y) = P(X ≤ x, Y ≤ y)
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is differentiable, we have

j(x, y) =
∂2

∂x∂y
P(X ≤ x, Y ≤ y)

=
∂2

∂x∂y
P(X ≤ x)P(Y ≤ y)

=
∂

∂x
P(X ≤ x)

∂

∂y
P(Y ≤ y)

= fX(x)fY (y).

�

Theorem 3 (Change of variables, law of the unconscious statistician).
Let X and Y be jointly continuous random variables with joint pdf j.
If g : R × R→ R is Borel measurable, then

Eg(X, Y ) =

∫ ∫
g(x, y)j(x, y)dxdy.

whenever the integral is absolutely convergent.

Again, we will postpone the proof of Theorem 3. An easy corollary
of Theorem 3 is again the linearity of expectation.

3. General properties of expectation

We will not have enough time to give a unified treatment of expecta-
tion. Using more of the machinery from measure theory it is possible,
in several classes to end up with the following expectation operator.
Let (Ω,F ,P) be a probability space. Let RV + denote the set of non-
negative random variable. We can construct E : RV + → [0,∞], with
the following properties.

(a) If X is a discrete random variable, then EX is the expectation in
the elementary sense.

(b) Given a random variable X ∈ RV + there exists a sequence of dis-
crete random variables such that for all ω ∈ Ω, we have Xn(ω) →
X(ω) monotonically, so thatXn(ω) ≤ Xn+1(ω); furthermore, EXn →
EX.

(c) The expectation operator is linear.

We define expectation for general random variables, by declaring:

EX := EX+ − EX−,

where X+ = max {X, 0} and X− = −min {X, 0}, so that EX is well
defined as long as both the expectations in the difference are not both
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infinity. Notice that

E|X| = EX+ + EX−.
The expectation operator agrees with all our previous notations for
expectation of discrete and continuous random variables.

The expectation operator also satisfies certain continuity properties.

Theorem 4 (Convergence theorems). Let Xn be a sequence of random
variables that converge to X (almost surely), so that for all ω ∈ Ω (or
an event Ω′ with P(Ω′) = 1), we have Xn(ω)→ X(ω).

(a) Monotone convergence theorem: If 0 ≤ Xn is a non-decreasing
sequence, then EXn → EX.

(b) Bounded convergence theorem: If there exists C such that |Xn| ≤
C, then E|X| <∞ and E|Xn −X| → 0.

(c) Dominated convergence theorem: If there exists a random variable
Y such that E|Y | <∞, and |Xn| ≤ Y , then E|X| <∞ and E|Xn−
X| → 0.

(d) Fatou’s Lemma: If Xn ≥ 0, then

lim inf
n→∞

EXn ≥ E(lim inf
n→∞

Xn).

Throughout the course, we will assume such an expectation operator
exists. However, most of the time in our specific examples, we will
operate in the discrete or continuous realm. In addition, we will not
use any fine properties or details of the construction, and furthermore,
will try to limit our use of Theorem 4.


