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EXPECTATION I

Abstract. We will define the expectation of a discrete random
variable and prove basic properties.

1. Introduction

Let X be a discrete real-valued random variable taking values in the
countable set R ⊆ R with pmf f(x) = P(X = x). Suppose that∑

x∈R

|x|f(x) <∞.

We define the expectation or mean of X via

EX =
∑
x∈R

xf(x).

The justification for this definition is the following theorem.

Theorem 1 (Law of large numbers). Let (Xi)
∞
i=1 be a i.i.d. sequence of

(discrete) real-valued random variables, defined on a probability space
(Ω,F ,P). Assume EX1 = µ ∈ R. Let the sample average be given by

Sn =
1

n

n∑
i=1

Xi.

There exists an event Ω′ ∈ F with unit probability, such that for all
ω ∈ Ω′ we have Sn(ω)→ µ as n→∞.

Remark 1. We have not defined expectation for continuous (and other)
random variables yet, but Theorem 1 will hold as stated, given the ap-
propriate definitions. The full proof of Theorem 1 is slightly beyond the
scope of this course. However, we will be able to prove a slightly less
general version that will be sufficient for many of our applications and
examples.

Remark 2. We require the sum defining expectation to be absolutely
convergent; this ensures that the order in which the summation takes
place does not matter. In the case that X is a nonnegative random vari-
able, it makes sense to define expectation to be infinite if the associated
sum fails to converge.
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Remark 3. Note that in the definition of expectation, it is computed
using the only the pmf of X so expectation is invariant under choice of
probability space; that is, if X and Y have the same law, then EX =
EY .

Exercise 1.1. Let X ∼ Bern(p), where p ∈ [0, 1]. Show that EX = p.

Exercise 1.2. Let X ∼ Poi(µ), where µ > 0. Show that EX = λ.

2. Properties of Expectation

Theorem 2 (Change of variables, law of the unconscious statistician).
Let X be a discrete random variable taking values on a countable set
R with pdf f . If g : R→ R, then

Eg(X) =
∑
x

g(x)f(x),

whenever the sum is absolutely convergent.

Proof. Note that g(X) is a discrete real-valued random variable. If
B = {g(x) ∈ R : x ∈ R}, then

Eg(X) =
∑
y∈B

yP(g(X) = y).

Let Ry := {x ∈ R : g(x) = y}. Note that the sets Ry partition the set
R. Thus

P(g(X) = y) = P(Ry) =
∑
x∈Ry

f(x)

and

Eg(X) =
∑
y∈B

∑
x∈Ry

yf(x) =
∑
y∈B

∑
x∈Ry

g(x)f(x) =
∑
x∈R

g(x)f(x);

here the assumption of absolute convergence allows us to freely inter-
change the order of summation. �

Applying Theorem 2 with the the absolute value function, we have
that the expectation of X is well-defined provided E|X| <∞.

If X and Y are random variables defined on same probability space,
taking values on sets A and B respectively, we say that they are jointly
distributed and if they are both discrete we say that they joint dis-
tribution is given by j : A×B → [0, 1] with

j(x, y) = P(X = x, Y = y) = P
(
{X = x} ∩ {Y = y}

)
.

Notice that j is the pmf for the discrete random variable Z = (X, Y ).
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Corollary 3 (Triangle inequality). Let a, b ∈ R. If X and Y are jointly
distributed discrete real-valued random variables, such that E|X|,E|Y | <
∞, then E(|aX + bY | ≤ |a|E|X|+ |b|E|Y | <∞.

Proof. Suppose X and Y take values on a countable sets A,B ⊆ R,
respectively. Consider the discrete random variable Z = (X, Y ) with
joint pdf j and the function g : A×B → R given by

g(z) = g(x, y) = |ax+ by|.
Note that∑

A×B

g(x, y)j(x, y) ≤ |a|
∑
A×B

|x|j(x, y) + |b|
∑
A×B

|y|j(x, y)

= |a|
∑
x∈A

∑
y∈B

|x|j(x, y) + |b|
∑
y∈B

∑
x∈A

|y|j(x, y)

= |a|
∑
x∈A

|x|P(X = x) + |b|
∑
y∈B

|y|P(Y = y)

= |a|E|X|+ |b|E|Y |.
�

Corollary 4 (Linearity of expectation). Let a, b ∈ R. If X and Y
are jointly distributed discrete real-valued random variables, such that
E|X|,E|Y | <∞, then E(aX + bY ) = aEX + bEY.
Remark 4. Note that in Corollary 4, we do not make any assumption
on the joint distribution of X and Y ; in particular, it is not necessary
to assume they are independent.

Exercise 2.1. Prove Corollary 4.

Exercise 2.2. Let X ∼ Bin(n, p). Find EX.

Solution. We know that if X1, . . . , Xn are i.id. Bernoulli random vari-
ables with parameter p, then S = X1 + · · ·Xn is a binomial random
variable with parameter (n, p). Thus X has the same law as S. By
Remark 3, we know that ES = EX and Exercise 1.1 and Corollary 4,
we have

ES = E(X1 + · · ·+Xn) = np.

�

Remark 5. Our solution to Exercise 2.2 is an example of a technique
in probability theory sometimes referred to as coupling. We are easily
able to compute EX by considering a probability space where it was easy
to compute since in this case we envisioned X as an independent sum
of Bernoulli’s.


