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EXPECTATION 1

ABSTRACT. We will define the expectation of a discrete random
variable and prove basic properties.

1. INTRODUCTION

Let X be a discrete real-valued random variable taking values in the
countable set R C R with pmf f(z) = P(X = x). Suppose that

S lelf(a) < oo

TER

We define the expectation or mean of X via

EX =) af(x).

z€R

The justification for this definition is the following theorem.

Theorem 1 (Law of large numbers). Let (X;)2, be a i.i.d. sequence of
(discrete) real-valued random variables, defined on a probability space
(Q, F,P). Assume EX; = € R. Let the sample average be given by

1 n

There exists an event ' € F with unit probability, such that for all
w € Q' we have S, (w) — p as n — 0.

Remark 1. We have not defined expectation for continuous (and other)
random variables yet, but Theorem 1 will hold as stated, given the ap-
propriate definitions. The full proof of Theorem 1 s slightly beyond the
scope of this course. However, we will be able to prove a slightly less
general version that will be sufficient for many of our applications and
examples.

Remark 2. We require the sum defining expectation to be absolutely
convergent; this ensures that the order in which the summation takes
place does not matter. In the case that X is a nonnegative random vari-
able, it makes sense to define expectation to be infinite if the associated

sum fails to converge.
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Remark 3. Note that in the definition of expectation, it is computed
using the only the pmf of X so expectation is invariant under choice of
probability space; that is, if X and Y have the same law, then EX =
EY.

Exercise 1.1. Let X ~ Bern(p), where p € [0,1]. Show that EX = p.
Exercise 1.2. Let X ~ Poi(u), where p > 0. Show that EX = .

2. PROPERTIES OF EXPECTATION

Theorem 2 (Change of variables, law of the unconscious statistician).
Let X be a discrete random variable taking values on a countable set
R with pdf f. If g: R — R, then

Eg(X) =) g(2)f(x),

whenever the sum s absolutely convergent.

Proof. Note that g(X) is a discrete real-valued random variable. If
B ={g(z) € R:z € R}, then

Eg(X)=> yP(9(X) =y).

Let R, := {x € R: g(x) = y}. Note that the sets R, partition the set
R. Thus

P(g(X) =y) =P(R,) = Y f(x)

TERy

Eg(X) =33 uf@) = 3 3 g@)f@) = 3 gla) f (o)
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and

here the assumption of absolute convergence allows us to freely inter-
change the order of summation. 0

Applying Theorem 2 with the the absolute value function, we have
that the expectation of X is well-defined provided E|X| < oco.

If X and Y are random variables defined on same probability space,
taking values on sets A and B respectively, we say that they are jointly
distributed and if they are both discrete we say that they joint dis-
tribution is given by j : A x B — [0, 1] with

Ja,y) =P(X =z,Y =y) =P({X =2} n{Y =y} ).
Notice that j is the pmf for the discrete random variable Z = (X,Y).
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Corollary 3 (Triangle inequality). Leta,b € R. If X andY are jointly
distributed discrete real-valued random variables, such that E| X |, E|Y]| <
00, then E(laX 4+ 0Y| < |a|E|X| + [DE|Y]| < 0.

Proof. Suppose X and Y take values on a countable sets A, B C R,
respectively. Consider the discrete random variable Z = (X,Y’) with
joint pdf j and the function g : A x B — R given by

9(2) = g(x,y) = |ax + by|.

Note that
> 9@ y)i(ey) < ol Y lxlie,y)+ 16l Y lyli(z,y)
AxB AxB AxB
= al > ) lalile,y) + 181D 0> lyli(z,y)
r€A yeB yEB z€A
= a] Y _[aP(X = 2)+[b] > [yP(Y =)
€A yeB
= |a|E[X]+ [b[E[Y].
]

Corollary 4 (Linearity of expectation). Let a,b € R. If X and Y
are jointly distributed discrete real-valued random variables, such that

E| X[, E|Y| < oo, then E(aX 4 bY') = aEX + bEY.

Remark 4. Note that in Corollary 4, we do not make any assumption
on the joint distribution of X and Y ; in particular, it is not necessary
to assume they are independent.

Exercise 2.1. Prove Corollary 4.
Exercise 2.2. Let X ~ Bin(n,p). Find EX.

Solution. We know that if Xy,..., X, are i.id. Bernoulli random vari-
ables with parameter p, then S = X; 4+ --- X,, is a binomial random
variable with parameter (n,p). Thus X has the same law as S. By
Remark 3, we know that ES = EX and Exercise 1.1 and Corollary 4,
we have
ES =E(X; + -+ X,) =np.
O

Remark 5. Our solution to Ezercise 2.2 is an example of a technique
in probability theory sometimes referred to as coupling. We are easily
able to compute EX by considering a probability space where it was easy
to compute since in this case we envisioned X as an independent sum
of Bernoulli’s.



