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RANDOM VARIABLES I

Abstract. It is often more easier to work with functions defined
on probability spaces, rather than working with probability spaces
directly.

1. Introduction

Suppose we wager on a finite sequence n of coin-flip: I win 2 dollars
when the coin comes up heads, and lose 1 dollar if it comes up tails.
One way to model this is to come up with a probability space consisting
of the possible values of my possibly negative winnings after n flips.
However, we already know how to construct a canonical probability
space (Ω,F ,P) for a sequence of n independent coin-flips by taking a
product measure for Ω = {0, 1}n. If we define X : {0, 1}n → R via

X(ω) =
n∑
i=1

[3ωi − 1],

then X is of my total winnings. Notice the value of X depends on ω
so it depends on a which coin-flips we get; thus X is called a random
variable. This notation allows us to address many questions using
probability theory in an easy way. For example, the number

P {ω ∈ Ω : X(ω) ≥ 0}
is the probability that I do not lose any money.

For countable probability spaces, a random variable is simply a func-
tion (usually real-valued) defined on the probability space. However,
we have to be a bit more careful in the case of uncountable probability
spaces. In what follows we develop some of the basic terminology and
machinery that allows us to deal with random variables.

2. Measurable functions

Let (Ω,F) and (R,G) be a measurable spaces. We say that a function
f : Ω→ R is measurable if for every B ∈ G we have

f−1(B) = {ω ∈ Ω : f(ω) ∈ B} ∈ F .
In many cases we are interested in real-valued measurable functions
in which case by default we endow R = R with the the Borel sigma-
algebra so that G = B(R).
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Remark 1. An important elementary fact that is often useful in our
discussion of measurable functions is that the inverse image preserves
the set operation of union, intersection and complements; that is,

f−1
(⋃
i∈I

Ai
)

=
⋃
i∈I

f−1(Ai)

f−1
(⋂
i∈I

Ai
)

=
⋂
i∈I

f−1(Ai)

f−1(Ac) =
(
f−1(A)

)c
.

The simplest measurable functions are the indicators. For every
A ∈ F , we let 1A : Ω → {0, 1} be given by 1A(ω) = 1 if ω ∈ A, and
1A(ω) =0 if ω ∈ Ac.

Exercise 2.1. Show that the indicators are measurable if we treat them
as real-valued functions or if we treat them as functions to {0, 1} en-
dowed with its power set as its sigma-algebra.

Exercise 2.2. Let (Ω,F) be a measurable space, and f : Ω → R be a
measurable function. Show the set

f−1(B) =
{
f−1(B) : B ∈ B

}
is a sigma-algebra for Ω.

Lemma 1. Let (Ω,F) be a measurable space. Let C be a collection of
subsets that generate B. Show that f : Ω → R is measurable if and
only if f−1(C) ⊆ F .

Proof. We prove the non-trivial direction. Consider

D =
{
B ∈ B : f−1(B) ∈ F

}
.

By assumption, C ⊆ D; furthermore, it is easy to verify that D is a
sigma-algebra. Since C generates B, we are done. �

Lemma 2. Let (Ω,F) be a measurable space. A function f : Ω → R
is measurable if and only if for every x ∈ R we have

f−1(−∞, x) = {ω ∈ Ω : f(ω) < x} ∈ F
and

f−1(−∞, x] = {ω ∈ Ω : f(ω) ≤ x} ∈ F .

Exercise 2.3. Show that a continuous function f : R → R is mea-
surable. In this context, the Borel sigma-algebra is used for both the
domain and co-domain.

A direct proof of the following proposition is tricky.
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Proposition 3. Show that the sum of two real-valued measurable func-
tions is again measurable.

For f : Ω→ R let

{f < x} = {ω ∈ Ω : f(ω) < x} .
Proof. Let (Ω,F) be a measurable space. Let f, g : Ω→ R be measur-
able functions. Let x ∈ R. Set h = f + g. Observe that denseness of
the rationals gives:

{h < x} =
⋃
r∈Q

{f < r} ∩ {g < x− r}

The measurability of f and g implies

{f < r} ∩ {g < x− r} ∈ F
for each r ∈ Q. Since the union is countable, we have that {h < x} ∈ F .
By Lemma 2, this is enough. �

Exercise 2.4. Show that the multiplication of two real-valued measur-
able functions is again measurable.

Exercise 2.5. Show that the minimum of two real-valued measurable
functions is again measurable.

3. Random variables and their distributions

Let (Ω,F ,P) be a probability space. Let X : Ω→ R be a measurable
function; in this context, we say that X is a (real-valued) random
variable. More generally, if (R,G) is a measurable space, then X :
Ω → R is a random variable if X is a measurable function; usually
we are interested in the case that R is a countable set and R = Rd;
in the case where R is countable, one can usually assume that R = N.
The law or the distribution of the random variable X is given by the
measure

Q(B) := P(X ∈ B)

for each B ∈ B.

Exercise 3.1. Check that Q is a probability measure for the measurable
space (R,B).

The cumulative distribution function for X is given by the func-
tion F : R→ [0, 1] with

F (x) = P {ω ∈ Ω : X(ω) ≤ x} = P(X ≤ x).

Lemma 4. If two random variables have the same cumulative distri-
bution function, then they have the same law.
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The proof of Lemma 4 requires some tools from measure theory which
we have not yet discussed.

Exercise 3.2. Prove that a cumulative distribution function is non-
decreasing and right continuous, with

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

In general, if F : R→ [0, 1] has the properties in Exercise 3.2, we say
that F is a cumulative distribution function (cdf). We will show
later that given by a cdf F we can construct a random variable on a
probability space with F as its cdf.

Theorem 5. If F is a cdf, then there exists a probability space (Ω,F ,P)
and a random variable X : Ω→ R such that X has F as its pdf.

3.1. Independence. Let (Ω,F ,P) be a probability space and (R,G)
be a measurable space. Let X and Y be random variables, We say that
X and Y are independent if

P(X ∈ A, Y ∈ B) := P {ω ∈ Ω : X(ω) ∈ A and Y (ω) ∈ B}
= P(X ∈ A)P(Y ∈ B).

In the case of real-valued random variables, where R = R, and G = B
one also has that X and Y are independent if and only if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

= FX(x)FY (y)

for all x, y ∈ R.
If X1, X2, . . . , is a sequence of real-valued random variables, we say

that the random variables are independent if for any finite distinct
choice of indexes i1, . . . , in and real numbers x1, . . . , xn we have

P(Xi1 ≤ x1, . . . , Xin ≤ xn) =
n∏
j=1

P(Xij ≤ xj).

We say that the random variables are identical if they are have the
same distribution. We will often work with independent and identical
sequences of random variables, as called i.i.d. sequences. Let us stress
here that if X and Y are identical random variables, this does not
imply that X(ω) = Y (ω); it only implies that they have an identical
distribution.

Exercise 3.3. Let (Ω,F ,P) be a probability space. Let A and B be
events. Show that A and B are independent if and only if 1A is inde-
pendent of 1B.
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In what follows we will discuss two important categories of real-
valued random variables give some examples.

3.2. Discrete random variables. Let (Ω,F ,P) be a probability space.
We say that a random variable X is discrete if there is a countable
set C such that P(X ∈ C) = 1. Sometimes the function given by

p(c) = P(X = c)

is called a probability mass function or a probability distribution
function (pmf, pdf). More generally, any p : C → [0, 1] such that∑

c∈C

p(c) = 1

can be referred to as a pmf. Given a pmf p, the a random variable
with pmf p is defined in the probability space (C,P(C),P), where
P(c) = p—-just take X : C → C to be the identity map. Thus we have
no theoretical issues with the existence of discrete random variables.

3.3. Some important examples. For what follows all random vari-
ables are assumed to be defined on a probability space, (Ω,F ,P). We
say that X is a Bernoulli random variable with parameter p ∈ (0, 1),
and we write X ∼ Bern(p), if P(X = 0) = 1−p and P(X = 1) = p. Let
n be a positive integer. We say that S is a binomial random variable
with parameter (n, p) and write S ∼ Bin(n, p), if P(0 ≤ X ≤ n) = 1,
and

P(S = k) =

(
n

k

)
pk(1− p)n−k

for all integers 0 ≤ k ≤ n.

Exercise 3.4. Let p ∈ (0, 1). Let (Xi)
n
i=1 be i.i.d. random variables

with X1 ∼ Bern(p). Let S = X1 + · · ·+Xn. Show that S ∼ Bin(n, p).

Exercise 3.5. Let X1, X2, . . . , be i.i.d. random variables with X1 ∼
Bern(p). Let

T = inf {n ≥ 1 : Xn = 1} .
Find the pmf for T .

Remark 2. Notice that in Exercise 3.5, we assumed the existence of
an infinite sequence of i.i.d. coin-flips. Technically, this is something
that might not exist. Don’t worry it does. We will prove this later.

We say X is a Poisson random variable with mean λ > 0, and we
write X ∼ Poi(λ) if

P(X = k) = e−λ
λk

k!
,

for all nonnegative integers k.
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Exercise 3.6. Let n > 0 and λ > 0. let W ∼ Poi(λ). Let (Xi)
n
i=1

be independent Bernoulli random variables with parameter p = λ/n.
Let Sn = X1 + · · ·+Xn. Show for all nonnegative integers k, we have
limn→∞ P(Sn = k) = P(W = k).

Exercise 3.7 (Superposition). Show that the sum of independent Pois-
son random variables is again a Poisson random variable.

3.4. Continuous random variables. We say that a real-valued ran-
dom variable X is a continuous random variable if there exists a
nonnegative integrable function f : R→ [0,∞) such that for all x ∈ R
we have

P(X ≤ x) =

∫ x

−∞
f(v)dv;

and more generally,

P(X ∈ A) =

∫
A

f(v)dv

for all A ∈ B.
Thus the cdf F for X is (absolutely) continuous, and moreover; the

fundamental theorem of calculus gives F ′(x) = f(x). Our density func-
tions will usually be piecewise continuous bounded Riemann integrable
functions.

The function f is called the probability density function (pdf)
for X. In general, any integrable function f : R→ [0,∞) with∫ ∞

−∞
f(v)dv = 1

is a pdf. We will show later that given a pdf f we can construct a
probability space in which we can define a random variable with f as
its pdf.

Note that for a continuous random X with a pdf f we have

P(a ≤ X ≤ b) =

∫ b

a

f(u)du

for all a < b and for all x ∈ R we have

P(X = x) = 0.

3.5. Some important examples. We say that a real-valued random
variable U is uniformly distributed in the interval (a, b) if U has the
density function 1

b−a1(a,b); thus if (c, d) ⊆ (a, b), we have

P(U ∈ (c, d)) = P(c < U < d) =
d− c
b− a

.
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Exercise 3.8. Let U be uniformly distributed on (0, 1). Let a < b.
Find a function φ : [0, 1]→ R so that φ(U) is uniformly distributed on
(a, b).

We say that a real-valued random variable X is an exponential
random variable with parameter (mean) µ > 0 if it has pdf given by

f(x) =
1

µ
exp(−x/µ)1[x > 0].

Exercise 3.9. Check that the f defined above is indeed a pdf.

Exercise 3.10. Let X be an exponential random variable and a > 0.
Check that aX is an exponential random variable.

Exercise 3.11. Show that the minimum of two independent exponen-
tial random variables is again an exponential random variable.

Exercise 3.12. Let U be uniformly distributed on (0, 1). Check that
− log(U) is an exponential random variable.

We say that X is a normal random variable with parameters (mean)
µ ∈ R and (variance) σ2 > 0 if it has pdf given by

f(x) =
1√
2πσ

exp[−(x− µ)2/2σ2].

Exercise 3.13. Check that the f defined above is indeed a pdf.

Exercise 3.14. Let X be an normal random variable. Let a, b ∈ R.
Check that aX + b is a again a normal variable.


