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RANDOM VARIABLES II

Abstract. We will discuss the existence of random variables and
independent sequences of random variables.

1. Uniform random variables

Recall that we asserted the existence of Lebesgue measure on the unit
interval; that is, by a result in measure theory, we know that there is a
translation-invariant probability measure defined on the Borel subsets
of the unit interval. This is easily implies the existence of a random
variable that is uniformly distributed on the unit interval.

Theorem 1. There exists a probability space (Ω,F ,P) and a random
variable U : Ω→ [0, 1] such that U is uniformly distributed on [0, 1].

The proof of Theorem 1 is underwhelming.

Proof of Theorem 1. Let (Ω,F ,P) be the probability space for Lebesgue
measure, where Ω = [0, 1) is the unit interval, and F is the Borel sub-
sets of the unit interval generated by the intervals of the form [a, b),
and P[a, b) = b − a for 0 ≤ a < b < 1. Take U : Ω → Ω to be the
identity map; that is U(ω) = ω. �

We will see that one uniform random variable is all we need.

Theorem 2. Let F be cdf. There exists a probability space (Ω,F ,P)
and a random variable X : Ω→ R with F as its cdf.

Before we prove Theorem 2, we give a simple construction to show
how Theorem 1 implies the existence of any discrete random variable.

Exercise 1.1. Let p : N → [0, 1] be a pmf. Find a (measurable) func-
tion φ : [0, 1) → R such that φ(U) has pmf p, if U is uniformly dis-
tributed in on the unit interval.

Solution to Exercise 1.1. Let U be uniformly distributed on the unit
interval. Consider the intervals

I0 = [0, p0), I1 = [p0, p1 + p0), . . . , In+1 = [pn, pn+1 + pn), . . . .

Clearly, the intervals are Borel measurable, and P(U ∈ In) = pn. Set

φ =
∞∑
n=0

n1In .

It is easy to verify that φ is measurable. �
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If F is a cdf, in the case that F is strictly increasing, then its inverse
function is well-defined F−1 on (0, 1). Sometimes F−1 is called the
quantile function. One can verify that it is also increasing. If U is
uniformly distributed on the unit interval, then since F−1 is increasing
we have

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x); (1)

hence F−1(U) has the cdf F . We should check that F−1 is measurable.

Lemma 3. If f : R→ R is a monotone function, then it is measurable.

Proof. By taking the negative, without loss of generality, assume that
f is nondecreasing. Fix y ∈ R. We have

f−1(−∞, y) = {x ∈ R : f(x) < y} .

Since f is nondecreasing, if x ∈ f−1(−∞, y), then any z ≤ x have we
f(z) ≤ f(x), thus we also have z ∈ f−1(−∞, y). Hence f−1(−∞, y)
can be all of R, the empty set, or an interval of the form (−∞, z) or
(∞, z] for z ∈ R. �

For cdf F that is not necessarily strictly increasing, we define its
generalized quantile function via

F−1(y) = sup {x ∈ R : F (x) < y} ,

for y ∈ (0, 1), which is a nondecreasing and thus measurable function.

Proof of Theorem 2. We already know that there is a probability space
that can house a random variable U that is uniformly distributed in
the unit interval. One can verify using the right continuity of F that
(1) holds for the case where we have to use the generalized quantile
function. �

Remark 1. Note that the proof of Theorem 2 gives one way of gener-
ating random variables, if one is given a random variable that is uni-
formly distributed on the unit interval to begin with—in practice this
is often the case, in the sense that most mathematical software has the
ability to generate such pseudo random variables. However, in practice,
there are usually much quicker and efficient ways to generate random
variables than to use Theorem 2.

2. Independent sequences of random variables

We will see that everything we want is a result of the fact that there
exists one random variable that is uniformly distributed in on the unit
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interval. Given u ∈ [0, 1), we write

u =
∞∑
i=1

bi
2i
,

where bi = bi(u) ∈ {0, 1} so that the sequence b(u) = (b1, b2, . . .) gives
the binary expansion of u.

For fixed n ≥ 1 and any binary sequence a ∈ {0, 1}n we have

P(b1(U) = a1, . . . , bn(U) = an) =
1

2n
,

since this event corresponds to an event that U is in an interval of
length 1

2n
. It is also not difficult to see that

P(b2(U) = a2, . . . , bn(U) = an) =
1

2n−1 ,

since this event corresponds to the an event that U belongs to one of
two disjoint intervals of length 1

2n
. Moreover, if we have k remaining

restrictions out the coordinates i1, . . . , ik, then

P(bi1(U) = ai1 , . . . , bik(U) = aik) =
1

2k
.

Thus we have the following result.

Proposition 4. If U is uniformly distributed on the unit interval, then
b(U) gives a sequence of i.i.d. Bernoulli 1

2
variables.

From Proposition 4, it is easy to see that how we can get two inde-
pendent random variables that are uniformly distributed on the unit
interval from one such random variable—just take odd and even bits.
Moreover, we have the following corollary.

Corollary 5. Let U be uniformly distributed on the unit interval. Let
F be a cdf. There exists a measurable functions vi : [0, 1)→ [0, 1) such
that

v1(U1), v2(U), . . .

is an i.i.d. sequence of random variables have F as their cdf.

Proof. By taking binary expansions, we get a an infinite sequence of
i.i.d. random variables U1, . . . , Un, . . . that are uniformly distributed on
the unit interval. By applying F−1 to each Ui we obtain the desired
result–once you believe the following. �

Exercise 2.1. Show that if X and Y are independent real-valued ran-
dom variables, then if g and h are Borel measurable functions, then
g(X) and h(Y ) are also independent random variables.


