
Coupling and total variational distance
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1 Coupling

A coupling of two random variables X and Y is a pair of random variables (X ′, Y ′) with a joint distribution
such that its marginal distributions are given by those of X and Y . Given two random variables X and Y ,
we can’t do simple operations on them such as X + Y , unless we know their joint distribution, that is, if
they even have one! If they have a joint distribution, then they live on the same probability space.

Often one can specify a coupling of X and Y , if we can find a function F (X, U), where U is uniformly
distributed on [0, 1] and independent of X, so that F (X, U) has the same law as Y . That is we can envision
Y as a function of X and an additional randomization U .

2 Examples

• Independent coupling: this option is always available, but it is often not the most interesting or useful.

• Quantile coupling/Inverse transform: If FX and FY are cdfs, and U is uniformly distributed, then
F −1

X (U) and F −1
Y (U) are random variables with these respective cdfs.
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• Thinning: If X is Bernoulli p and Z is an independent Bernoulli r, then XZ is Bernoulli pr. Thus
(X, XZ) is a coupling of Bernoulli random variables with parameters p and pr, and X ≥ XZ.

3 Comparing games

Suppose June plays a gambling game with her mum using p = 2/3 coin, betting on heads, winning 1 pound
if the coin comes up heads, and losing 1 pound otherwise. We start with 0 pounds and allow the possibility
of going negative. June stops playing as soon as she reaches 5 pounds. Suppose Tessa plays the same game
with her dad using a p = 1/2 coin.
We can’t say that June will be better off than Tessa for sure, since the coins are independent. Suppose we
want to compare the expectation of the length of time W it takes for the game to end; it seems obvious that
the mean time for June should be less than that of Tessa’s. In fact, the mean time for Tessa is infinite.

4 Enter coupling

We can envision a coupling of these two games, where June is always better off.

• Let Xi be amount that June wins/loses on the ith flip, and Yi is the corresponding amount for Tessa.

• We can arrange a coupling of Xi and Yi so that X ′
i ≥ Y ′

i , so that Tessa wins only when June wins.
Use thinning!

• Under this coupling, we do have that W ′
J ≤ W ′

T , so we can compute

EWJ = EW ′
J ≤ EW ′

T = EWT ,

without knowing too much about W .

5 Some R code

Here, we provide some code to illustrates the two coupled games.
We first code and test the coupled coin-flips.

coupled<-function(){
j= rbinom(1,1,2/3)
t= rbinom(1,1,3/4)*j

c(j,t)
}
S=replicate(10000, coupled())
mean(S[1,])

## [1] 0.6665

mean(S[2,])

## [1] 0.4982

Then, we run simulations to see long the game takes on average for June and Tessa.
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exit<-function(p){
x=0
n=0
while(x <5){

x <- x+(2*rbinom(1,1,p) -1)
n <- n+1
}
n

}

mean(replicate(1000, exit(2/3)))

## [1] 15.256

mean(replicate(25, exit(1/2)))

## [1] 197.64

We could of run similar simulations without coupling. The point is, we established this result analytically
using coupling. The code here is really just to illustrate the coupling. In the last bit of code, we note that
in each simulation, under the coupling, Tessa never finishes before June.

exitcoupled<-function(){
june =0
tessa =0
njune=0
ntessa=0
while(june < 5){

v = coupled()
june <- june + 2*v[1] -1
tessa <- tessa + 2*v[2] -1
njune <- 1+njune
ntessa <- 1 + ntessa}

while(tessa <5){
tessa <- tessa+ 2*rbinom(1,1,0.5) -1

ntessa <- 1 + ntessa
}

c(njune, ntessa)
}

replicate(25, exitcoupled())

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 27 9 23 15 35 21 11 9 5
## [2,] 91 11 45 37 59 23 29 9 17
## [,10] [,11] [,12] [,13] [,14] [,15] [,16]
## [1,] 5 7 9 5 11 5 15
## [2,] 45 7 9 27 91 11 739
## [,17] [,18] [,19] [,20] [,21] [,22] [,23]
## [1,] 5 11 9 9 9 7 9
## [2,] 7 387 21 59 31 201 47
## [,24] [,25]
## [1,] 29 43
## [2,] 121 115
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6 Total variational distance

Let X and Y be real-valued random variables. The total variational distance between X and Y is given by:

dT V (X, Y ) = 2 · sup
A is an event

|P(X ∈ A) − P(Y ∈ A)|.

Note that the definition of dT V (X, Y ) only depends on the laws of X and Y , individually; in particular, if
we have that if (X ′, Y ′) is a coupling of X and Y , then

dT V (X ′, Y ′) = dT V (X, Y ).

6.1 Common formula

Lemma 6.1. Let X and Y be integer-valued random variables. We have that

dT V (X, Y ) =
∑
z∈Z

|P(X = z) − P(Y = z)|.

The proof follows from the following simple fact: If

D = {z ∈ Z : P(X = z) ≥ P(Y = z)},

then

∑
z∈Z

|P(X = z) − P(Y = z)| =
∑
z∈D

(P(X = z) − P(Y = z)) +
∑

z∈Dc

(P(Y = z) − P(X = z)).

Proof. Observe that for any A ⊂ Z, we have

|P(X ∈ A) − P(Y ∈ A)| = |P(X ∈ Ac) − P(Y ∈ Ac)|.

Thus using the set D, we see that

dT V (X, Y ) ≥
∑
z∈Z

|P(X = z) − P(Y = z)|.

For the other direction, note that

|P(X ∈ A) − P(Y ∈ A)| =
∣∣ ∑

z∈A

P(X = z) −
∑
z∈A

P(Y = z)
∣∣

≤
∑
z∈A

|P(X = z) − P(Y = z)|.

Thus it follows that

2|P(X ∈ A) − P(Y ∈ A)| = |P(X ∈ A) − P(Y ∈ A)| + |P(X ∈ Ac) − P(Y ∈ Ac)|
≤

∑
z∈Z

|P(X = z) − P(Y = z)|.

Exercise 6.1. Let X ∼ Bern(p), Y ∼ Bern(q), and W ∼ Poi(p). Compute dT V (X, Y ) and dT V (X, W ).
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6.2 Coupling inequality

Lemma 6.2. If X and Y are jointly distributed random variables, then

dT V (X, Y ) ≤ 2P(X ̸= Y ).

Proof. Let A be an event. Note that

|P(X ∈ A) − P(Y ∈ A)| =
∣∣∣P(X ∈ A, X = Y ) + P(X ∈ A, X ̸= Y ) − P(Y ∈ A, X ̸= Y ) − P(Y ∈ A, X = Y )

∣∣∣
= |P(X ∈ A, X ̸= Y ) − P(Y ∈ A, X ̸= Y )|
≤ P(X ̸= Y ).

7 Examples

• Let X1, . . . , Xn, Xn+1 be i.i.d. Bernoulli with parameter p. Let Sk be their partial sum. We can bound

dT V (Sn, Sn+1) ≤ 2P(Sn ̸= Sn+1)
= 2P(Xn+1 = 1)
= 2p

• Let X be a six-sided fair die, and Y be a seven-sided fair die. Assume X and Y are independent. Let
X ′ = Y , if Y ̸= 7, otherwise, take X ′ = X. Clearly, X ′ has the same law as a six-sided fair die. Then

dT V (X, Y ) = dT V (X ′, Y ) ≤ 2P(X ′ ̸= Y ) = 2
7 .

8 Summary

We saw some basics of how coupling can be used as a tool in probability theory and in particular, how it
can be used the bound the total variational distance between two random variables.

9 Endnotes

• FOr the relation between total variational distance and other related distance on distributions and
random variables see Gibbs and Su 2002.

• Version: 19 April 2024
• Rmd Source
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https://tsoo-math.github.io/ucl/TV-lec.Rmd
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