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Motivating question

Consider a dynamic network where nodes attach one by one via some
stochastic mechanism that depends on relative age of vertices.

We observe a snapshot of the unlabelled network Tn when its size is n. Where

is the root? (Online detection)

Figure: Visualizing freely available citation data using VOSviewer by Nees Jan van Eck, Ludo
Waltman
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Formalizing the question

• For any error tolerance ε ∈ (0, 1), produce a confidence set Sn(ε)
based on Tn such that

P (root ∈ Sn(ε)) > 1 − ε.

• Quantify dependence of Sn(ε) on ε, n and the geometry of Tn.

• When can the size of Sn(ε) be chosen independently of n
(algorithm is stable in network size)?
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Main Strategy

• Centrality measure: Devise a statistic Ψ : V(Tn)→ R+ on the
unlabelled network that gives a ‘score’ to each vertex that strongly
correlates with age.

• Confidence set: For any ε ∈ (0, 1), set Sn(ε) to be the set of k(ε)
vertices with highest (or lowest) Ψ-scores in Tn.

• Persistence: For any k ∈N, the k vertices with the highest (or
lowest) Ψ-scores eventually fixate as the network grows. Leads to
algorithms stable in network size.
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Examples of centrality measures

The following centrality measures will play a crucial role in this talk.

• Degree centrality (local): Ψd(u,T) := deg(u).

• Subtree centrality (global, defined only for tree networks):

Ψs(u,T) := max
v∼u

|(T,u)v↓|

where (T,u)v↓ is the subtree rooted at v in the rooted tree (T ,u).
The centroid is the vertex that minimizes Ψs(·,T).
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Centrality measures (contd.)

measures.pdf
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Generalized Attachment (GA) networks

• At each time step n, a new vertex vn connects to the existing
network through mn new edges attached one by one.

• Given the current structure of the network, each new edge is
attached to one of the existing vertices u with probability
proportional to a positive function f of the degree of u.

P
(
(k+ 1)th edge of vn+1 → u | Tn,k

)
=

f(deg(u))∑
v∈Tn,k f(deg(v))

.

where Tn,k is the network after adding n vertices and k edges of the
(n+ 1)-th vertex.

• {mn} called the attachment sequence and f called the attachment
function.

• Network is a tree if mn ≡ 1.
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Linear and Uniform attachment networks

When f(k) = k+β we get the celebrated (Affine) Linear Preferential
Attachment (LPA) network which exhibits scale-free and small-world
properties.

When f ≡ 1, we get the Uniform Attachment (UA) network.

These are more tractable due to a deterministic denominator in the
attachment probability.



9

Questions

• How much does degree correlate with age? Can we use it to obtain
degree-based root finding algorithms? For what attachment
functions are they stable in the network size?

• In the absence of stable degree-based root finding algorithms, how
much of the connectivity information do we need to find the root?
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Degree centrality: Persistence and
root finding algorithms
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Advantages

• Computationally more efficient.

• Works on non-tree like networks.
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Previous work

• Dereich and Mörters (2009) investigated persistence of the maximal
degree vertex for a related directed random graph model. They
showed that persistence holds if and only if the associated
attachment function f(k) grows sufficiently fast with k (captured
through a summability condition).

• Galashin (2013) showed that the maximal degree vertex in a GA
network persists when f(k) = k or f is a convex function.
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Two regimes: persistent and non-persistent

We show that persistence of the maximal degree vertex is completely
characterized by the attachment sequence and the following two
quantities:

Φ1(n) :=

n∑
k=1

1

f(k)
, Φ2(n) :=

n∑
k=1

1

f2(k)
.

Theorem (B. and Bhamidi (2020a))

Assume f is non-decreasing and there exists Cf > 0 such that f(i) 6 Cfi
for all i > 1. Also, suppose Φ2(∞) <∞ and that, almost surely,

lim sup
n→∞

Φ1(mn)

log
(∑n

i=1mi
) 6

1

8Cf
.

Then the maximal degree vertex persists eventually.
If Φ2(∞) =∞, the maximal degree vertex does not persist.
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Breaking persistence in the persistent regime

Theorem (B. and Bhamidi (2020a))

Assume that f is non-decreasing, Φ2(∞) <∞ and {mi}i>1 form an i.i.d.
sequence supported on N.
(i) Suppose there exists Cf > 0 such that f(i) 6 Cfi for all i > 1. If
there exist positive constants D, z0 and θ > 1 such that

P (Φ1(m1) > z) 6 e
−Dzθ , z > z0,

then almost surely maximal degree vertex persists eventually.

(ii) Suppose E(m1) <∞. If there exist positive constants D ′, z ′0 and
θ ′ ∈ (0, 1) such that

P (Φ1(m1) > z) > e
−D ′zθ

′
, z > z ′0,

then, almost surely, there is no persistence.
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GA trees: Scaling of maximum degree in persistent regime

In this case, we do not need monotonicity assumptions on f and can
obtain precise asymptotics for the maximum degree and age of the
maximal degree vertex.
A key role is played by the Malthusian rate λ∗ which is the unique
solution to ∞∑

k=1

k∏
i=1

f(i)

λ+ f(i)
= 1.

Theorem (B. and Bhamidi (2020a))

Let Φ2(∞) <∞ and f(i) 6 Cfi for all i > 1. Then there is persistence
and the maximum degree exhibits the following asymptotics:

dmax(n) = Φ
−1
1

(
1

λ∗
logn+X∗n

)
,

where X∗n converges almost surely to some random variable X∗ as
n→∞.



16

GA trees: Age and degree of maximal degree vertex in
non-persistent regime

Theorem (B. and Bhamidi (2020a))

Assume Φ2(∞) =∞. Under some regularity assumptions on f and
assuming f(k)→∞ as k→∞, the age An of the maximal degree
vertex when the network is of size n exhibits the following asymptotics:

logAn

Φ2 ◦Φ−1
1

(
1
λ∗ logn

) P−→ λ∗2

2
, as n→∞.

Moreover, the maximum degree satisfies

Φ1(dmax(n)) −
1
λ∗ logn

Φ2 ◦Φ−1
1

(
1
λ∗ logn

) P−→ λ∗

2
, as n→∞.
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Example: Sublinear attachment functions

• When f(k) = kα, then persistent regime corresponds to
α ∈ (1/2, 1].

• For α = 1, dmax(n) ∼
√
n and An = O(1).

• For α ∈ (1/2, 1), then dmax(n) ∼ (logn)1/(1−α) and An = O(1).

• For α ∈ (0, 1/2), then dmax(n) ∼ (logn)1/(1−α) and

An ∼ exp
{
C(logn)(1−2α)/(1−α)

}
.
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Root finding algorithms in the persistent regime

For given error tolerance ε ∈ (0, 1), let Kd(ε) denote the least number of
maximal degree vertices required to form the confidence set for the root.

In the persistent regime, Kd(ε) can be chosen independent of network
size.

Theorem (B. and Huang (2021))

Suppose f(i) = i+β, i > 1, for some β > 0, and mi ≡ m > 1. There
exist positive constants C1,C ′1,C2, depending on m,β, such that for any
ε ∈ (0, 1),

C ′1

ε
2m+β
m(m+β)

6 Kd(ε) 6
C1

ε
2m+β
m(m+β)

exp

(√
C2 log

1

ε

)
.
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Root finding algorithms in the persistent regime (contd.)

Write f∗ := infk>1 f(k).

Theorem (B. and Huang (2021))

Suppose the attachment function f satisfies Φ2(∞) <∞ and some
regularity assumptions.
(i) Suppose mi ≡ m = 1. For any fixed δ ∈ (0, 1), there exist positive
constants C1 (not depending on δ) and Cδ (depending on δ) such that
for all ε ∈ (0, 1),

C1

ε
λ∗
f∗

6 Kd(ε) 6
Cδ

ε
λ∗

(1−δ)f∗
.

(ii) Suppose mi ≡ m > 1. For any δ ∈ (0, 1), there exist positive
constants C1 (not depending on δ) and C̄δ (depending on δ) such that
for all ε ∈ (0, 1),

C1

ε
f∗

mf(m)

6 Kd(ε) 6
C̄δ

ε
2Cf

(1−δ)f∗

, ε ∈ (0, 1).
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Root finding in the non-persistent regime (tree case)

Let f(k) = kα for some α ∈ (0, 1/2]. For v ∈ V(Tn), define

Ψn(v) := max{deg(u) : dist(u, v) 6 C1(logn)(1−2α)/(1−α)}.

Theorem (B. and Huang (2021))

Suppose mi ≡ 1. Let Sn be the set of

exp
{
C2(logn)(1−2α)/(1−α) log logn

}
vertices with the highest Ψn-scores. Then, for any ε ∈ (0, 1),

P (root ∈ Sn) > 1 − ε

for all n > exp
{
C3[log(1/ε)](1−α)/(1−2α)

}
.
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Stable root finding algorithms in non-persistent regime?

• Can we obtain a persistent centrality measure even in the (degree)
non-persistent regime by using the global network geometry to
compute the centrality score of any vertex?

• Associated root finding algorithms will be stable in the network size
at the cost of added computational complexity.
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Subtree centrality: Persistence and
root finding in tree networks
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Recall

measures.pdf
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Previous work

• Bubeck, Devroye and Lugosi (2015) used the subtree centrality
measure to obtain confidence sets for the root in the LPA and UA
case that grow polynomially in ε−1.

• Loh and Jog (2015) showed that the subtree centrality measure
persists for LPA and UA trees.

• Loh and Jog (2016) considered the case when f(k) = kα,α ∈ (0, 1)
and showed that there is a unique terminal centroid, namely, a vertex
v∗ such that for any other fixed vertex u, there exists Nu such that

Ψs(v
∗,Tn) < Ψs(u,Tn), ∀ n > Nu.

They used this weak persistence to show existence of the confidence
set S(ε) although their methods did not give explicit quantitative
bounds.
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Main results: Persistence

Theorem (B. and Bhamidi (2020b))

Suppose the attachment function f satisfies infk>1 f(i) = f∗ > 0 and

limk→∞ f(k)
k exists and is finite. Then the subtree centrality measure is

persistent (in the strong sense).
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Confidence set upper bounds

Let ks(ε) denote the smallest positive integer such that S(ε) comprises
the vertices with the least ks(ε) Ψs-scores.

Theorem (B. and Bhamidi (2020a))

Suppose the attachment function f satisfies the assumptions of the
previous theorem.

• Suppose for some Cf > 0, β > 0, f satisfies f∗ 6 f(i) 6 Cf · i+β
for all i > 1. Then ∃ positive constants C1,C2 such that for any
error tolerance 0 < ε < 1,

ks(ε) 6
C1

ε(2Cf+β)/f∗
exp(

√
C2 log 1/ε).

• If further the attachment function f is in fact bounded with f(i) 6 f∗

for all i > 1 then one has for any error tolerance 0 < ε < 1,

ks(ε) 6
C1

εf
∗/f∗

exp(
√
C2 log 1/ε).
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Confidence set lower bounds

Theorem (B. and Bhamidi (2020a))

Suppose the attachment function f satisfies the assumptions of the
previous theorems.

• If ∃ Cf > 0 and β > 0 such that f(i) > Cf · i+β for all i > 1 then
∃ a positive constant C′1 such that for any error tolerance 0 < ε < 1,

ks(ε) >
C′1

ε(2Cf+β)/f(1)
.

• For general f one has for any error tolerance 0 < ε < 1,

ks(ε) >
C′1

εf∗/f(1)
.
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Special cases

Corollary (B. and Bhamidi (2020a))

• Uniform attachment f(k) ≡ 1:

C′1
ε

6 ks(ε) 6
C1

ε
exp(

√
C2 log

1

ε
).

• Affine LPA f(k) = k+β, β > 0:

C′1

ε
2+β
1+β

6 ks(ε) 6
C1

ε
2+β
1+β

exp(

√
C2 log

1

ε
).

• Sublinear preferential attachment f(k) = kα,α ∈ (0, 1):

C′1
ε

6 ks(ε) 6
C1

ε2
exp(

√
C2 log

1

ε
).
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Proof outline: Key technical
ingredients
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Point processes

Point processes

• Let {Ek : k > 0} be sequence of independent exponential random
variables with Ek having rate f(k). View above as the inter-arrival
times of point process ξf i.e. writing

Li = E1 + · · ·+ Ei, i > 1,

ξf[0, t] := #{i : Li 6 t}. Intensity measure µf[0, t] := E(ξf[0, t]).

0

L1 L2 L3 L4

E1 E2 E3 E4
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Key ingredients: Branching process embedding of network
(Rudas, Toth and Valko, 2006)

Continuous time branching process (CTBP)

Fix attachment function f. CTBP driven by f, written as
{BPf(t) : t > 0}: branching process started with one individual at time
t = 0; every individual born into the system has an offspring distribution
that is an independent copy of ξf.

Embedding

Fix attachment function f consider the sequence of random trees
{Tm : 2 6 m 6 n} constructed using attachment function f and mi ≡ 1.
Define for m > 1 the stopping times Tm := inf{t > 0 : |BPf(t)| = m}.
Then

{BPf(Tm) : 2 6 m 6 n}
d
= {Tm : 2 6 m 6 n}.

A continuous time embedding of the non-tree network into a collapsed
branching process was obtained in B. and Huang (2021).
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Malthusian rate as growth rate of BP

• Recall that the Malthusian rate λ∗ is the (unique) solution to
ρ̂(λ∗) = 1, where

ρ̂(λ) :=

∞∑
k=1

k∏
i=1

f(i)

λ+ f(i)
.

• ρ̂ arises as the Laplace transform of the intensity measure µf of the
point process ξf:

ρ̂(λ) =

∫∞
0
e−λtµf(dt).

Thus, λ∗ is the unique positive λ which makes the measure
θλ(dt) = e

−λtµf(dt) a probability measure.

• λ∗ quantifies the ‘rate of exponential growth’ for the branching
process:

e−λ
∗t|BP(t)|

a.s.→ W.
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Tail behavior of W and rate of convergence

W satisfies the following recursive distributional equation (RDE):

W
d
=

∞∑
i=1

e−λ
∗LiWi

where Wi are i.i.d. copies of W. A crucial technical advancement is the
use of the above RDE in showing the following.

Theorem (B. and Bhamidi (2020a))

Suppose the attachment function f satisfies infk>1 f(i) = f∗ > 0 and

limk→∞ f(k)
k exists and is finite. Then the distribution of W has

exponential tails.

This, along with a quantitative rate of convergence of e−λ
∗t|BP(t)| to

W obtained in B., Bhamidi and Carmichael (2018), were two crucial
technical ingredients in proving our results.
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A convenient martingale

• The analysis of degree centrality crucially depends on the continuous
time martingale

M(t) := Φ1(ξf(t)) − t,

where Φ1(n) =
∑n
k=1

1
f(k) and ξf(·) is the point process used in

the continuous time embedding.

• The competition between degrees of two fixed vertices as the
network grows can be encoded in terms of competition between two
copies of the above martingale started from different points.

• Φ2(∞) <∞ implies M(·) has finite quadratic variation. Showing
persistence relies on concentration inequalities and large deviations
for this martingale and the Borel-Cantelli lemma.

• When Φ2(∞) =∞, non-persistence is a consequence of a functional
central limit theorem for the martingale.



34

A convenient martingale

• The analysis of degree centrality crucially depends on the continuous
time martingale

M(t) := Φ1(ξf(t)) − t,

where Φ1(n) =
∑n
k=1

1
f(k) and ξf(·) is the point process used in

the continuous time embedding.

• The competition between degrees of two fixed vertices as the
network grows can be encoded in terms of competition between two
copies of the above martingale started from different points.

• Φ2(∞) <∞ implies M(·) has finite quadratic variation. Showing
persistence relies on concentration inequalities and large deviations
for this martingale and the Borel-Cantelli lemma.

• When Φ2(∞) =∞, non-persistence is a consequence of a functional
central limit theorem for the martingale.



34

A convenient martingale

• The analysis of degree centrality crucially depends on the continuous
time martingale

M(t) := Φ1(ξf(t)) − t,

where Φ1(n) =
∑n
k=1

1
f(k) and ξf(·) is the point process used in

the continuous time embedding.

• The competition between degrees of two fixed vertices as the
network grows can be encoded in terms of competition between two
copies of the above martingale started from different points.

• Φ2(∞) <∞ implies M(·) has finite quadratic variation. Showing
persistence relies on concentration inequalities and large deviations
for this martingale and the Borel-Cantelli lemma.

• When Φ2(∞) =∞, non-persistence is a consequence of a functional
central limit theorem for the martingale.



34

A convenient martingale

• The analysis of degree centrality crucially depends on the continuous
time martingale

M(t) := Φ1(ξf(t)) − t,

where Φ1(n) =
∑n
k=1

1
f(k) and ξf(·) is the point process used in

the continuous time embedding.

• The competition between degrees of two fixed vertices as the
network grows can be encoded in terms of competition between two
copies of the above martingale started from different points.

• Φ2(∞) <∞ implies M(·) has finite quadratic variation. Showing
persistence relies on concentration inequalities and large deviations
for this martingale and the Borel-Cantelli lemma.

• When Φ2(∞) =∞, non-persistence is a consequence of a functional
central limit theorem for the martingale.



35

Asymptotics for age and moderate deviations

Obtaining the age asymptotics for the maximal degree vertex in the
non-persistent regime relies on obtaining moderate deviation principles
for the martingale M(·) along with the continuous time embedding of the
GA tree in a branching process.
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Ongoing and future work

• Persistent local centrality scores in the (degree) non-persistent
regime and connection to Google’s PageRank (ongoing work with
Mariana Olvera-Cravioto and Shankar Bhamidi).

• Source detection for epidemics on Galton-Watson trees conditioned
to be infinite (ongoing work with Shankar Bhamidi and Sumit Kar).

• Exploration type algorithms for root finding (see Borgs et. al (2013)
and Frieze and Pegden (2018) for such algorithms in the LPA case).
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• Persistent local centrality scores in the (degree) non-persistent
regime and connection to Google’s PageRank (ongoing work with
Mariana Olvera-Cravioto and Shankar Bhamidi).

• Source detection for epidemics on Galton-Watson trees conditioned
to be infinite (ongoing work with Shankar Bhamidi and Sumit Kar).

• Exploration type algorithms for root finding (see Borgs et. al (2013)
and Frieze and Pegden (2018) for such algorithms in the LPA case).



37

Thank You!


