In this worksheet, we will consider a natural random walk process, that is not Markovian.
The reinforced random walk on the integers is defined as follows: if you are \(i \in \mathbb{Z}\), then you can only go to \(i+1\) or \(i-1\), and you move to \(i+1\) with probability \(v(i+1)/[v(i-1) + v(i+1)]\), where \(v(j)\) is the total number of times an integer \(j\) has already been visited. Initially, we take \(v=1\) everywhere.
It is a theorem of Tarres (2004) that the walk will eventually get stuck on five vertices. In this worksheet we will try to write some code to illustrate this fact.
We will store the number of visits to positive integers in the vectors vpos, store the visits to negative integers in vneg, and the visits to zero as vzero. We will start the walk at the origin.
step <-function(i,l,r){
nextstep = i-1
p = r/(l+r)
if (rbinom(1,1,p) == 1){nextstep <- i+1}
nextstep
}
steps<- function(N){
vpos =NULL
vneg =NULL
vzero =1
path = 0
wr = 1
wl =1
k=0
while(k <N){
current= path[length(path)]
if (current+1 >0 && length(vpos) >= current+1){
wr = vpos[current+1]
}
if (current+1 ==0){
wr = vzero
}
if (current+1 <0){
wr = vneg[abs(current+1)]
}
if (current-1 <0 && length(vneg) >= abs(current-1)){
wl = vneg[abs(current-1)]
}
if (current-1 ==0){
wl = vzero
}
if (current-1 >0){
wl = vpos[current-1]
}
nextspot = step(current, wl,wr)
an = abs(nextspot)
path <- c(path, nextspot)
if (nextspot==0){vzero<- vzero+1}
if (nextspot <0 && an <= length(vneg)){vneg[an] <- vneg[an] +1 }
if (nextspot <0 && an > length(vneg)){vneg <-c(vneg, 2) }
if (nextspot >0 && an <= length(vpos)){vpos[an] <- vpos[an] +1 }
if (nextspot >0 && an > length(vpos)){vpos <-c(vpos, 2) }
wl=1
wr=1
k <-k+1
}
list(path, vneg, vzero, vpos)
}
steps(2000)
## [[1]]
## [1] 0 1 2 3 2 3 4 3 4 3 2 1 0 1 0 1 2 1 0 1 2 3 2 1 2 1 0 1 0 1 0 1 0 1 0 1 0
## [38] 1 2 1 0 1 2 1 2 3 2 1 2 1 0 1 0 1 0 1 2 1 2 1 2 1 2 3 2 1 2 3 2 1 0 1 0 1
## [75] 2 1 0 1 2 3 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 0 1 0 1 2 1 0 1 2 1 0 1 2
## [112] 1 0 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
## [149] 2 1 2 3 2 1 0 1 0 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 0 1 2 1 0 1 2 1 0
## [186] 1 2 3 4 3 2 1 2 1 2 1 0 1 0 1 2 1 0 1 0 1 0 1 0 1 2 3 2 3 2 1 0 1 2 1 2 1
## [223] 0 1 0 1 2 1 2 1 2 1 2 1 0 1 0 1 0 1 0 1 2 1 0 1 2 1 0 1 0 1 2 1 2 1 0 1 0
## [260] 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 0 1 0 1 2 1 0 1 2 1 2 1 2 1 0 1
## [297] 0 1 0 1 2 1 0 1 2 1 0 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 0
## [334] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 0 1 0 1 0 1 2 1 2 1
## [371] 2 1 2 1 2 1 0 1 2 1 2 1 0 1 2 1 2 1 0 1 2 1 0 1 0 1 2 1 2 1 2 1 2 1 0 1 2
## [408] 1 2 1 0 1 0 1 2 1 2 1 2 1 0 1 0 1 2 1 2 1 0 1 2 1 0 1 0 1 2 1 0 1 0 1 0 1
## [445] 2 1 2 1 2 1 2 1 2 3 2 3 2 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1 0 1 2 1 0 1 2 1 0
## [482] 1 2 1 0 1 0 1 2 1 2 1 0 1 0 1 0 1 2 3 2 1 2 1 2 1 2 1 2 1 0 1 0 1 2 1 2 1
## [519] 2 1 0 1 2 1 2 1 2 1 0 1 0 1 0 1 2 1 2 1 2 1 0 1 0 1 0 1 2 1 0 1 2 1 2 1 0
## [556] 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1
## [593] 2 1 2 1 0 1 0 1 2 1 2 1 0 1 2 1 0 1 0 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 2 1 2
## [630] 1 2 1 0 1 2 1 0 1 0 1 2 3 2 1 2 1 2 1 0 1 0 1 2 1 0 1 2 1 0 1 0 1 2 1 0 1
## [667] 0 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 0 1 0 1 0 1 2 1 2 1 2 3 2 1 2 1 2 1 2
## [704] 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 0 1 2 1
## [741] 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 0 1 0 1 2 1 2 3 2 1 0 1 0 1 2 1 2 1 2 1 0
## [778] 1 2 1 0 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 2 1 2 3 2 1 0 1 2 1 0 1 2 1
## [815] 2 1 2 1 0 1 2 1 0 1 2 3 2 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 2
## [852] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1
## [889] 2 1 2 1 2 1 2 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 2 1 0 1 2 1 0 1 2 1 0
## [926] 1 2 1 2 1 2 1 0 1 2 1 0 1 0 1 0 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 2 1 0 1 0 1
## [963] 2 1 2 1 0 1 2 1 2 1 2 1 0 1 0 1 0 1 2 1 2 1 2 1 0 1 0 1 0 1 2 1 0 1 2 1 2
## [1000] 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1
## [1037] 2 1 0 1 2 1 0 1 0 1 0 1 2 1 2 3 2 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0
## [1074] 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 0 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1
## [1111] 0 1 0 1 2 1 2 1 2 3 2 1 2 1 0 1 2 1 0 1 0 1 2 1 0 1 2 1 2 1 0 1 2 1 2 1 2
## [1148] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 0 1 2 1
## [1185] 2 1 2 1 2 1 0 1 0 1 0 1 2 1 2 1 2 1 0 1 0 1 2 3 2 1 2 1 2 1 2 1 2 1 2 3 2
## [1222] 1 0 1 0 1 2 1 0 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 2 1 0 1
## [1259] 0 1 0 1 0 1 2 1 2 1 0 1 0 1 2 1 2 1 2 3 2 1 0 1 2 1 2 1 2 1 0 1 0 1 2 1 2
## [1296] 1 2 1 0 1 2 1 0 1 0 1 2 1 2 1 0 1 0 1 0 1 2 1 0 1 0 1 2 1 2 1 0 1 2 1 2 1
## [1333] 2 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2
## [1370] 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 2 3 2 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1
## [1407] 2 1 2 1 0 1 2 1 2 1 0 1 2 1 0 1 2 1 0 1 0 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2
## [1444] 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 0 1 0 1 2 1 2 1
## [1481] 2 1 0 1 0 1 2 1 2 1 0 1 0 1 0 1 2 3 2 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2
## [1518] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 0 1 2 1 0 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1
## [1555] 2 1 2 1 0 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 0 1 2
## [1592] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 0 1 2 1 2 1 2 3 2 1 2 1 2 1 2 1
## [1629] 2 1 0 1 0 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 0 1 0 1 2 1 0
## [1666] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 0 1 2 1 0 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1
## [1703] 0 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2
## [1740] 1 2 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 0 1 0 1 0 1 0 1 2 1 2 1 2 1 2 1
## [1777] 0 1 0 1 2 1 0 1 0 1 0 1 0 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 0 1 2 1 2 1 0 1 2
## [1814] 1 0 1 2 1 2 1 2 3 2 1 2 1 2 1 2 1 2 1 0 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1
## [1851] 0 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 0 1 2 1 0 1 2 1 2 1 2 1 2 1 0 1 0 1 2
## [1888] 3 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 0 1 2 1
## [1925] 2 1 2 1 2 1 0 1 2 1 2 1 2 1 0 1 2 1 0 1 0 1 2 1 2 1 2 1 2 1 2 3 2 1 2 1 0
## [1962] 1 2 1 0 1 2 1 2 1 0 1 2 1 0 1 0 1 2 1 0 1 2 1 2 1 2 1 2 1 2 1 0 1 2 1 2 3
## [1999] 2 1 0
##
## [[2]]
## NULL
##
## [[3]]
## [1] 333
##
## [[4]]
## [1] 965 666 37 4