Will we explore basic symbolic computing inside Python. In symbolic computing, the software is able to compute 2x=x+x or ∫x0x2dx=x33 without having a numerical value for x. Popular software includes, Maple, Mathematica, and Sage; Python’s sympy is a basic in-house substitute, which we will explore.
import sympy as sym
x = sym.pi # the digit pi
print(x)
## pi
print("#############")
## #############
print(x.evalf())
## 3.14159265358979
print("#############")
## #############
print(x.evalf(100))
## 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
print("#############")
## #############
x = sym.Symbol('x') # you got to tell Python that x is symbol
print(sym.simplify((x + x)))
## 2*x
y = sym.Symbol('y')
y=sym.integrate(3 * x ** 2, x) # integrate 3x^2
print(y)
## x**3
print("#############")
## #############
We can also do linear algebra
a = sym.Symbol('a')
b = sym.Symbol('b')
c = sym.Symbol('c')
d = sym.Symbol('d')
M = sym.Symbol('M')
M=sym.Matrix([[a, b], [c, d]])
print(M)
## Matrix([[a, b], [c, d]])
print("#############")
## #############
print(M.det())
## a*d - b*c
print("#############")
## #############
print(M.T)
## Matrix([[a, c], [b, d]])
print("#############")
## #############
print(M.eigenvects())
## [(a/2 + d/2 - sqrt(a**2 - 2*a*d + 4*b*c + d**2)/2, 1, [Matrix([
## [-d/c + (a/2 + d/2 - sqrt(a**2 - 2*a*d + 4*b*c + d**2)/2)/c],
## [ 1]])]), (a/2 + d/2 + sqrt(a**2 - 2*a*d + 4*b*c + d**2)/2, 1, [Matrix([
## [-d/c + (a/2 + d/2 + sqrt(a**2 - 2*a*d + 4*b*c + d**2)/2)/c],
## [ 1]])])]
print("#############")
## #############
Msub = M.subs(a,1).subs(b,1).subs(c,1).subs(d,0)
values = Msub.eigenvects()
print("#############")
## #############
print(values)
## [(1/2 - sqrt(5)/2, 1, [Matrix([
## [1/2 - sqrt(5)/2],
## [ 1]])]), (1/2 + sqrt(5)/2, 1, [Matrix([
## [1/2 + sqrt(5)/2],
## [ 1]])])]
print("#############")
## #############
Consider the two state Markov chain on {1,2} where p11=a=1−p12 and
p21=b=1−p21
We will consider the case where a,b∈(0,1).
Write down the transition matrix.
Find the stationary distribution of the transition matrix.
Simulate the chain, (starting at 1) and leave a and b as variables that you can choose.
Choose a=0.3 and b=0.2.
At t=100 of your simulation, for this snapshot, record the value of the Markov chain; repeat this for N=300 times, and find the proportion times that the chain is at 1 and 2.
For a given simulation, of length t=1000, also record the total number of times the Markov chain takes the value 1 and 2; take these numbers and divide it by 1000 (or a thousand and one depending how you coded)
What did you observe?